Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Braz. arch. biol. technol ; 59: e16160078, 2016. tab, graf
Article in English | LILACS | ID: biblio-951385

ABSTRACT

ABSTRACT Corn husks are the major wastes of corn industries with meagre economic significance. The present study was planned for value addition of corn husk through extraction of xylan, followed by its enzymatic hydrolysis into xylooligosaccharides, a pentose based prebiotic. Compositional analysis of corn husks revealed neutral detergent fibre 68.87%, acid detergent fibre 31.48%, hemicelluloses 37.39%, cellulose 29.07% and crude protein 2.68%. Irrespective of the extraction conditions, sodium hydroxide was found to be more effective in maximizing the yield of xylan from corn husks than potassium hydroxide (84% vs. 66%). Application of xylanase over the xylan of corn husks resulted into production of xylooligosaccharides with different degree of polymerization namely, xylobiose and xylotriose in addition to xylose monomer. On the basis of response surface model analysis, the maximum yield of xylobiose (1.9 mg/ml) was achieved with the enzymatic hydrolysis conditions of pH 5.8, temperature 44°C, enzyme dose 5.7U/ml and hydrolysis time of 17.5h. Therefore, the corn husks could be used as raw material for xylan extraction vis a vis its translation into prebiotic xylooligosaccharides.

2.
Indian J Exp Biol ; 2015 Mar; 53(3): 131-142
Article in English | IMSEAR | ID: sea-158396

ABSTRACT

Oligosaccharides and dietary fibres are non-digestible food ingredients that preferentially stimulate the growth of prebiotic Bifidobacterium and other lactic acid bacteria in the gastro-intestinal tract. Xylooligosaccharides (XOS) provide a plethora of health benefits and can be incorporated into several functional foods. In the recent times, there has been an over emphasis on the microbial conversion of agroresidues into various value added products. Xylan, the major hemicellulosic component of lignocellulosic materials (LCMs), represents an important structural component of plant biomass in agricultural residues and could be a potent bioresource for XOS. On an industrial scale, XOS can be produced by chemical, enzymatic or chemo-enzymatic hydrolysis of LCMs. Chemical methods generate XOS with a broad degree of polymerization (DP), while enzymatic processes will be beneficial for the manufacture of food grade and pharmaceutically important XOS. Xylooligomers exert several health benefits, and therefore, have been considered to provide relief from several ailments. This review provides a brief on production, purification and structural characterization of XOS and their health benefits.


Subject(s)
Adjuvants, Immunologic/economics , Adjuvants, Immunologic/isolation & purification , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/therapeutic use , Animals , Anticarcinogenic Agents/economics , Anticarcinogenic Agents/isolation & purification , Anticarcinogenic Agents/pharmacology , Anticarcinogenic Agents/therapeutic use , Antioxidants/economics , Antioxidants/isolation & purification , Antioxidants/pharmacology , Antioxidants/therapeutic use , Biomass , Carbohydrate Sequence , Chromatography/methods , Crops, Agricultural/chemistry , Crops, Agricultural/economics , Dietary Fiber/analysis , Fungal Proteins/metabolism , Gastrointestinal Tract/microbiology , Glucuronates/economics , Glucuronates/isolation & purification , Glucuronates/pharmacology , Glucuronates/therapeutic use , Humans , Hydrolysis , Lignin/analysis , Microbiota/drug effects , Molecular Sequence Data , Molecular Structure , Oligosaccharides/economics , Oligosaccharides/isolation & purification , Oligosaccharides/pharmacology , Oligosaccharides/therapeutic use , Prebiotics/economics , Waste Products/economics , Xylans/chemistry
3.
Journal of Nutrition and Health ; : 229-235, 2014.
Article in Korean | WPRIM | ID: wpr-91573

ABSTRACT

PURPOSE: The objective of this study was to investigate the effects of xyloologosaccharide (XOS)-sugar mixture on glycemic index (GI) and blood glucose in human subjects. METHODS: Randomized double-blind cross-over studies were conducted to examine the effect of sucrose with 14% xyloologosaccharide powder (Xylo 14) and sucrose with 20% xylooligosaccharide powder (Xylo 20) on GI and postprandial glucose response at 15, 30, 45, 60, 90, and 120 min. RESULTS: GIs of Xylo 14 and Xylo 20 were 60.0 +/- 23.5 classified within medium GI range, and 54.3 +/- 17.7 within low GI range, respectively. Xylo 14 and Xylo 20 showed significantly lower area under the glucose curve (AUC) for 0-15 min (p = 0.0113), 0-30 min (p = 0.0004), 0-45 min (p < 0.0001), 0-60 min (p < 0.0001), 0-90 min (p < 0.0001), and 0-120 min (p = 0.0001). In particular, compared with glucose, the blood glucose levels of Xylo 14 and Xylo 20 were significantly lower at every time point between 15 and 120 min. CONCLUSION: The results of this study suggested that Xylo 14 and Xylo 20 had an acute suppressive effect on GI and the postprandial glucose surge.


Subject(s)
Adult , Humans , Blood Glucose , Cross-Over Studies , Glucose , Glycemic Index , Sucrose
4.
Chinese Journal of Physical Medicine and Rehabilitation ; (12)2003.
Article in Chinese | WPRIM | ID: wpr-681988

ABSTRACT

Objective To analyze the characteristic colligation force vector curves in hemiplegic patients. Methods Eleven hemiplegic patients were recruited, and 11 healthy elderly served as control. The characteristic changes of the patients with regard to colligation force vector demonstrated on a feedback apparatus of the "X.O.S"system during the dynamic training exercise program were analyzed and compared with that of the control group. Results The value of the colligation force vector passing most of the regions were significantly decreased ( P

SELECTION OF CITATIONS
SEARCH DETAIL